JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Binomial Theorem

Question

Let α>0,β>0 be such that α3+β2=4. If the maximum value of the term independent of x in the binomial expansion of αx19+βx-1610 is 10k, then k is equal to

JEE Main 2020 (02 Sep Shift 1)

Options

  • A: 336
  • B: 352
  • C: 84
  • D: 176
Explaination

Question

If {p} denotes the fractional part of the number p, then 32008 is equal to

JEE Main 2020 (06 Sep Shift 1)

Options

  • A: 58
  • B: 78
  • C: 38
  • D: 18
Explaination

Question

Let 2x2+3x+410=r=020arxr. Then a7a13 is equal to ______

JEE Main 2020 (04 Sep Shift 1)

Enter your answer

Explaination

Question

If b is very small as compared to the value of a, so that the cube and other higher powers of ba can be neglected in the identity

1a-b+1a-2b+1a-3b+.+1a-nb=αn+βn2+γn3

then the value of γ is :

JEE Main 2021 (25 Jul Shift 1)

Options

  • A: a2+b3a3
  • B: a+b3a2
  • C: b23a3
  • D: a+b23a3
Explaination

Question

The number of elements in the set {n{1,2,3,,100}(11)n>(10)n+(9)n is ___________.

JEE Main 2021 (22 Jul Shift 1)

Enter your answer

Explaination

Question

The remainder when 111011+101111 is divided by 9 is _____ .

JEE Main 2022 (25 Jul Shift 2)

Options

  • A: 1
  • B: 8
  • C: 6
  • D: 4
Explaination

Question

If 12·310+122·39++1210·3=K210·310, then the remainder when K is divided by 6 is

JEE Main 2022 (25 Jun Shift 1)

Options

  • A: 2
  • B: 3
  • C: 4
  • D: 5
Explaination

Question

The term independent of x in the expression of 1-x2+3x352x3-15x211,x0 is

JEE Main 2022 (28 Jun Shift 2)

Options

  • A: 740
  • B: 33200
  • C: 39200
  • D: 1150
Explaination

Question

If the constant term in the expansion of 3x3-2x2+5x510 is 2k.l, where l is an odd integer, then the value of k is equal to

JEE Main 2022 (29 Jun Shift 1)

Options

  • A: 6
  • B: 7
  • C: 8
  • D: 9
Explaination

Question

Among the statements :

(S1) : 20232022-19992022 is divisible by 8.

(S2) : 13(13)n-11n-13 is divisible by 144 for infinitely many n

JEE Main 2023 (06 Apr Shift 2)

Options

  • A: Only S2 is correct
  • B: Only (S1) is correct
  • C: Both S1 and S2 are correct
  • D: Both S1 and S2 are incorrect
Explaination

Question

The remainder on dividing 599 by 11 is _____ .

JEE Main 2023 (31 Jan Shift 1)

Enter your answer

Explaination

Question

The remainder, when 7103 is divided by 17, is

JEE Main 2023 (13 Apr Shift 2)

Enter your answer

Explaination

Question

If the constant term in the expansion of $\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$ is $\mathrm{p}$, then $108 \mathrm{p}$ is equal to

JEE Main 2024 (05 Apr Shift 1)

Enter your answer

Explaination

Question

If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$ is 105 , then $\mathrm{a}^2$ is equal to :

JEE Main 2024 (08 Apr Shift 2)

Options

  • A: 2
  • B: 4
  • C: 6
  • D: 9
Explaination

Question

The remainder when $428^{2024}$ is divided by 21 is__________

JEE Main 2024 (09 Apr Shift 1)

Enter your answer

Explaination

Question

Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of 13x13+12x2318. Then nm13 is:

JEE Main 2024 (01 Feb Shift 2)

Options

  • A: 49
  • B: 19
  • C: 14
  • D: 94
Explaination

Question

Number of integral terms in the expansion of 712+1116824 is equal to ______.

JEE Main 2024 (30 Jan Shift 1)

Enter your answer

Explaination

Question

In the expansion of 1+x1x21+3x+3x2+1x35, x0, the sum of the coefficient of x3 and x-13 is equal to ______

JEE Main 2024 (31 Jan Shift 1)

Enter your answer

Explaination

Question

If the coefficient of x30 in the expansion of 1+1x61+x271x38;x0 is α, then α equals _________.

JEE Main 2024 (01 Feb Shift 1)

Enter your answer

Explaination

Question

Remainder when 643232 is divided by 9 is equal to _____.

JEE Main 2024 (29 Jan Shift 2)

Enter your answer

Explaination

Question

Crn-1=k2-8Cr+1n if and only if :

JEE Main 2024 (27 Jan Shift 1)

Options

  • A: 22<k3
  • B: 23<k32
  • C: 23<k<33
  • D: 22<k<23
Explaination

Back to Content