JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Complex Number

Question

Let u=2z+iz-ki,z=x+iy and k>0. If the curve represented byRe(u)+Im(u)=1 intersects the y-axis at points P and Q where PQ=5 then the value of k is

JEE Main 2020 (04 Sep Shift 1)

Options

  • A: 32
  • B: 12
  • C: 4
  • D: 2
Explaination

Question

Let a complex number be w=1-3i. Let another complex number z be such that |zw|=1 and argz-argw=π2. Then the area of the triangle (in sq. units) with vertices origin, z and w is equal to

JEE Main 2021 (18 Mar Shift 2)

Options

  • A: 4
  • B: 12
  • C: 14
  • D: 2
Explaination

Question

Let the lines 2-iz=2+iz¯ and 2+iz+i-2z¯-4i=0, (here i2=-1) be normal to a circle C. If the line iz+z¯+1+i=0 is tangent to this circle C, then its radius is :

JEE Main 2021 (25 Feb Shift 1)

Options

  • A: 32
  • B: 32
  • C: 322
  • D: 122
Explaination

Question

Let C be the set of all complex numbers. Let

S1=zC| z32i2=8,

S2=zC| Rez5  and

S3=zC| zz¯8.

Then the number of elements in S1S2S3 is equal to

JEE Main 2021 (27 Jul Shift 1)

Options

  • A: 1
  • B: 0
  • C: 2
  • D: Infinite
Explaination

Question

Let z and w be two complex numbers such that w=zz¯-2z+2,z+iz-3i=1 and Rew has minimum value. Then, the minimum value of nN for which wn is real, is equal to _______.

JEE Main 2021 (16 Mar Shift 1)

Enter your answer

Explaination

Question

If α,β,γ,δ are the roots of the equation x4+x3+x2+x+1=0, then α2021+β2021+γ2021+δ2021 is equal to

JEE Main 2022 (25 Jul Shift 1)

Options

  • A: 4
  • B: 1
  • C: -4
  • D: -1
Explaination

Question

For nN, let Sn=zC:z-3+2i=n4 and Tn=zC:z-2+3i=1n. Then the number of elements in the set nN:SnTn=ϕ is

JEE Main 2022 (25 Jul Shift 1)

Options

  • A: 0
  • B: 2
  • C: 3
  • D: 4
Explaination

Question

Let a circle C in complex plane pass through the points z1=3+4i,z2=4+3i and z3=5i. If zz1 is a point on C such that the line through z and z1 is perpendicular to the line through z2 and z3, then argz is equal to

JEE Main 2022 (25 Jun Shift 1)

Options

  • A: tan-1247-π
  • B: tan-125-π
  • C: tan-13-π
  • D: tan-134-π
Explaination

Question

Let O be the origin and A be the point z1=1+2i. If B is the point z2,Rez2<0, such that OAB is a right angled isosceles triangle with OB as hypotenuse, then which of the following is NOT true?

JEE Main 2022 (26 Jul Shift 1)

Options

  • A: arg z2=π-tan-13
  • B: argz1-2z2=-tan-143
  • C: z2=10
  • D: 2z1-z2=5
Explaination

Question

Let A=zC:z+1z-1<1 and B=zC:argz-1z+1=2π3. Then AB is

JEE Main 2022 (26 Jun Shift 1)

Options

  • A: a portion of a circle centred at 0,-13 that lies in the second and third quadrants only
  • B: a portion of a circle centred at 0,-13 that lies in the second quadrant only
  • C: an empty set
  • D: a portion of a circle of radius 23 that lies in the third quadrant only
Explaination

Question

Let S1=z1C:z1-3=12 and S2=z2C:z2-z2+1=z2+z2-1. Then, for z1S1 and z2S2, the least value of z2-z1 is

JEE Main 2022 (28 Jul Shift 1)

Options

  • A: 0
  • B: 12
  • C: 32
  • D: 52
Explaination

Question

Let S={z:z-31 andz4+3i+z¯4-3i24}. If α+iβ is the point in S which is closest to 4i, then 25α+β is equal to ______.

JEE Main 2022 (24 Jun Shift 2)

Enter your answer

Explaination

Question

Let z=a+ib, b0 be complex numbers satisfying z2=z¯·21-z. Then the least value of nN, such that zn=z+1n, is equal to _____ .

JEE Main 2022 (28 Jul Shift 2)

Enter your answer

Explaination

Question

Sum of squares of modulus of all the complex numbers z satisfying z¯=iz2+z2-z is equal to

JEE Main 2022 (28 Jun Shift 2)

Enter your answer

Explaination

Question

Let a,b be two real numbers such that ab<0. If the complex number 1+aib+i is of unit modulus and a+ib lies on the circle z-1=2z, then a possible value of 1+a4b, where t is greatest integer function, is :

JEE Main 2023 (01 Feb Shift 2)

Options

  • A: 0
  • B: -1
  • C: 1
  • D: 12
Explaination

Question

Let p, q and (1-3i)200=2199(p+iq)i=-1. Then, p+q+q2 and p-q+q2 are roots of the equation.

JEE Main 2023 (24 Jan Shift 1)

Options

  • A: x2+4x-1=0
  • B: x2-4x+1=0
  • C: x2+4x+1=0
  • D: x2-4x-1=0
Explaination

Question

Let z1=2+3i and z2=3+4i. The set S=zC:z-z12-z-z22=z1-z22 represents a

JEE Main 2023 (25 Jan Shift 1)

Options

  • A: straight line with sum of its intercepts on the coordinate axes equals 14
  • B: hyperbola with the length of the transverse axis 7
  • C: straight line with the sum of its intercepts on the coordinate axes equals -18
  • D: hyperbola with eccentricity 2
Explaination

Question

Let z be a complex number such that z-2iz+i=2, z-i. Then z lies on the circle of radius 2 and centre

JEE Main 2023 (25 Jan Shift 2)

Options

  • A: (2,0)
  • B: (0,2)
  • C: (0,0)
  • D: (0,-2)
Explaination

Question

Let ab be two non-zero real numbers. Then the number of elements in the set X=zC:Reaz2+bz=a and Rebz2+az=b is equal to

JEE Main 2023 (06 Apr Shift 2)

Options

  • A: 0
  • B: 1
  • C: 3
  • D: 2
Explaination

Question

Let C be the circle in the complex plane with centre z0=121+3i and radius r=1. Let z1=1+i and the complex number z2 be outside circle C such that z1-z0z2-z0=1. If z0, z1 and z2 are collinear, then the smaller value of z22 is equal to

JEE Main 2023 (12 Apr Shift 1)

Options

  • A: 52
  • B: 72
  • C: 132
  • D: 32
Explaination

Question

Let S=z:z¯=iz2+Re(z¯). Then zS|z|2 is equal to

JEE Main 2023 (13 Apr Shift 2)

Options

  • A: 52
  • B: 4
  • C: 72
  • D: 3
Explaination

Question

Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^2+|z|=0$, $z \in$ C. Then $4\left(\alpha^2+\beta^2\right)$ is equal to :

JEE Main 2024 (04 Apr Shift 1)

Options

  • A: 6
  • B: 8
  • C: 2
  • D: 4
Explaination

Question

The area (in sq. units) of the region $S=\{z \in \mathbb{C}:|z-1| \leq 2 ;(z+\bar{z})+i(z-\bar{z}) \leq 2, \operatorname{Im}(z) \geq 0\}$ is

JEE Main 2024 (04 Apr Shift 2)

Options

  • A: $\frac{7 \pi}{3}$
  • B: $\frac{7 \pi}{4}$
  • C: $\frac{17 \pi}{8}$
  • D: $\frac{3 \pi}{2}$
Explaination

Question

Let $S_1=\{z \in C:|z| \leq 5\}, S_2=\left\{z \in C: \operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0\right\}$ and $S_3=\{z \in C: \operatorname{Re}(z) \geq 0\}$. Then the area of the region $S_1 \cap S_2 \cap S_3$ is :

JEE Main 2024 (05 Apr Shift 2)

Options

  • A: $\frac{125 \pi}{12}$
  • B: $\frac{125 \pi}{4}$
  • C: $\frac{125 \pi}{24}$
  • D: $\frac{125 \pi}{6}$
Explaination

Question

Let r and θ respectively be the modulus and amplitude of the complex number z=2-i2tan5π8, then (r,θ) is equal to

JEE Main 2024 (29 Jan Shift 2)

Options

  • A: 2sec3π8,3π8
  • B: 2sec3π8,5π8
  • C: 2sec5π8,3π8
  • D: 2sec11π8,11π8
Explaination

Back to Content