JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Determinants

Question

If Δ=x22x33x42x33x44x53x55x810x17=Ax3+Bx2+Cx+D, then B+C  is equal to :

JEE Main 2020 (03 Sep Shift 1)

Options

  • A: -1
  • B: 1
  • C: -3
  • D: 9
Explaination

Question

Suppose the vectors x1,x2 and x3 are the solutions of the system of linear equations, Ax=b when the vector b on the right side is equal to b1,b2 and b3 respectively. If x1=111, x2=021, x3=001; b1=100, b2=020, b3=002, then the determinant of A is equal to

JEE Main 2020 (04 Sep Shift 2)

Options

  • A: 4
  • B: 2
  • C: 12
  • D: 32
Explaination

Question

If the minimum and the maximum values of the function f:π4,π2R, defined by fθ=-sin2θ-1-sin2θ1-cos2θ-1-cos2θ11210-2 are m and Mrespectively, then the ordered pair (m, M) is equal to :

JEE Main 2020 (05 Sep Shift 1)

Options

  • A: 0,22
  • B: -4,0
  • C: -4, 4
  • D: 0,4
Explaination

Question

Let θ0,π2. If the system of linear equations
1+cos2θx+sin2θy+4sin3θz=0

cos2θx+1+sin2θy+4sin3θz=0

cos2θx+sin2θy+(1+4sin3θ)z=0
has a non-trivial solution, then the value of θ is:

JEE Main 2021 (26 Aug Shift 1)

Options

  • A: 4π9
  • B: 5π18
  • C: 7π18
  • D: π18
Explaination

Question

Let A=[x+1][x+2]  [x+3][x] [x+3]  [x+3][x][x+2] [x+4], where [x] denotes the greatest integer less than or equal to x. If det(A)=192, then the set of values of x is in the interval:

JEE Main 2021 (27 Aug Shift 2)

Options

  • A: [62,63)
  • B: [65,66)
  • C: [60,61)
  • D: [68,69)
Explaination

Question

If ar=cos2rπ9+isin2rπ9,r=1,2,3,,i=-1, then the determinant a1a2a3a4a5a6a7a8a9 is equal to :

JEE Main 2021 (31 Aug Shift 1)

Options

  • A: a9
  • B: a1a9-a3a7
  • C: a5
  • D: a2a6-a4a8
Explaination

Question

If α+β+γ=2π, then the system of equations

x+cosγy+cosβz=0

cosγx+y+cosαz=0

cosβx+cosαy+z=0

has :

JEE Main 2021 (31 Aug Shift 2)

Options

  • A: infinitely many solutions
  • B: a unique solution
  • C: no solution
  • D: exactly two solutions
Explaination

Question

Let a,b,c,d be in arithmetic progression with common difference λ. If x+a-cx+bx+ax-1x+cx+bx-b+dx+dx+c=2, then value of λ2 is equal to________.

JEE Main 2021 (20 Jul Shift 1)

Enter your answer

Explaination

Question

Let fx=sin2x-2+cos2xcos2x2+sin2xcos2xcos2xsin2xcos2x1+cos2x, x0,π. Then the maximum value of  fx is equal to

JEE Main 2021 (27 Jul Shift 1)

Enter your answer

Explaination

Question

Let S be the set of all values of θ[-π,π] for which the system of linear equations
x+y+3z=0
-x+(tanθ)y+7z=0
x+y+(tanθ)z=0
has non-trivial solution.Then 120π0Sθ is equal to

JEE Main 2023 (08 Apr Shift 2)

Options

  • A: 20
  • B: 40
  • C: 30
  • D: 10
Explaination

Question

Let Dk=12k2k-1nn2+n+2n2nn2+nn2+n+2. If k=1nDk=96, then n is equal to _________.

JEE Main 2023 (12 Apr Shift 1)

Enter your answer

Explaination

Question

Consider the matrices : $A=\left[\begin{array}{ll}2 & -5 \\ 3 & m\end{array}\right], B=\left[\begin{array}{l}20 \\ m\end{array}\right]$ and $X=\left[\begin{array}{l}x \\ y\end{array}\right]$. Let the set of all $m$, for which the system of equations $A X=B$ has a negative solution (i.e., $x < 0$ and $y < 0$ ), be the interval $(a, b)$. Then $8 \int_a^b|A| d m$ is equal to_________

JEE Main 2024 (09 Apr Shift 2)

Enter your answer

Explaination

Question

If   fx=2cos4x2sin4x3+sin22x3+2cos4x2sin4xsin22x2cos4x3+2sin4xsin22x then 15f'(0) is equal to ________.

JEE Main 2024 (30 Jan Shift 1)

Options

  • A: 0
  • B: 1
  • C: 2
  • D: 6
Explaination

Question

If the system of equations

2x+3yz=5

x+αy+3z=4

3xy+βz=7

has infinitely many solutions, then 13αβ is equal to

JEE Main 2024 (01 Feb Shift 1)

Options

  • A: 1110
  • B: 1120
  • C: 1210
  • D: 1220
Explaination

Question

Let for any three distinct consecutive terms a, b, c of an A.P, the lines ax+by+c=0 be concurrent at the point P and Q(α,β) be a point such that the system of equations x+y+z=62x+5y+αz=β and x+2 y+3 z=4, has infinitely many solutions. Then (PQ)2 is equal to _______.

JEE Main 2024 (29 Jan Shift 2)

Enter your answer

Explaination

Question

Let A be a 3×3 real matrix such that A101=2101, A101=4101, A010=2010. Then, the system A3Ixyz=123 has

JEE Main 2024 (31 Jan Shift 2)

Options

  • A: unique solution
  • B: exactly two solutions
  • C: no solution
  • D: infinitely many solutions
Explaination

Back to Content