JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Differential Equations

Question

Let y=y(x) satisfies the equation dydx-A=0, for all x>0, where A=ysinx10-11201x. If y(π)=π+2, then the value of yπ2 is:

JEE Main 2021 (20 Jul Shift 2)

Options

  • A: π2+4π
  • B: π2-1π
  • C: 3π2-1π
  • D: π2-4π
Explaination

Question

Let y=yx be the solution of the differential equation x-x3dy=y+yx2-3x4dx,x>2 If y3=3, then y4 is equal to:

JEE Main 2021 (27 Jul Shift 2)

Options

  • A: 4
  • B: 12
  • C: 8
  • D: 16
Explaination

Question

If dy dx=2x+y-2x2y,y0=1, then y(1) is equal to :

JEE Main 2021 (31 Aug Shift 1)

Options

  • A: log21+e2
  • B: log2(2e)
  • C: log2(2+e)
  • D: log2(1+e)
Explaination

Question

The slope of normal at any point x,y,x>0,y>0 on the curve y=yx is given by x2xy-x2y2-1. If the curve passes through the point 1,1, then e·ye is equal to

JEE Main 2022 (24 Jun Shift 2)

Options

  • A: 1-tan11+tan1
  • B: tan1
  • C: 1
  • D: 1+tan11-tan1
Explaination

Question

The general solution of the differential equation x-y2dx+y5x+y2dy=0 is

JEE Main 2022 (25 Jul Shift 1)

Options

  • A: y2+x4=Cy2+2x3
  • B: y2+2x4=Cy2+x3
  • C: y2+x3=C2y2+x4
  • D: y2+2x3=C2y2+x4
Explaination

Question

Let y=yx be the solution of the differential equation x+1y'-y=e3xx+12, with y0=13. Then, the point x=-43 for the curve y=yx is

JEE Main 2022 (25 Jun Shift 1)

Options

  • A: not a critical point
  • B: a point of local minima
  • C: a point of local maxima
  • D: a point of inflection
Explaination

Question

If y=yx is the solution of the differential equation 2x2dydx-2xy+3y2=0 such that ye=e3, then y1 is equal to

JEE Main 2022 (25 Jun Shift 2)

Options

  • A: 13
  • B: 23
  • C: 32
  • D: 3
Explaination

Question

If y=yx,x0,π2 be the solution curve of the differential equation

sin22xdydx+8sin22x+2sin4xy=

2e-4x2sin2x+cos2x, with yπ4=e-π, then yπ6 is equal to

JEE Main 2022 (28 Jul Shift 1)

Options

  • A: 23e-2π3
  • B: 23e2π3
  • C: 13e-2π3
  • D: 13e2π3
Explaination

Question

Let the solution curve y=yx of the differential equation, xx2-y2+eyxxdydx=x+xx2-y2+eyxy pass through the points 1,0 and 2α,α,α>0. Then α is equal to

JEE Main 2022 (28 Jun Shift 1)

Options

  • A: 12expπ6+e-1
  • B: 12expπ3+e-1
  • C: expπ6+e+1
  • D: 2expπ3+e-1
Explaination

Question

Let x=xy be the solution of the differential equation 2yexy2dx+y2-4xexy2dy=0 such that x1=0. Then, xe is equal to

JEE Main 2022 (28 Jun Shift 2)

Options

  • A: eloge2
  • B: -eloge2
  • C: e2loge2
  • D: -e2loge2
Explaination

Question

If the solution curve of the differential equation dydx=x+y-2x-y passes through the point 2,1 and k+1,2,k>0, then

JEE Main 2022 (29 Jul Shift 2)

Options

  • A: 2tan-11k=logek2+1
  • B: tan-11k=logek2+1
  • C: 2tan-11k+1=logek2+2k+2
  • D: 2tan-11k=logek2+1k2
Explaination

Question

Let y=yx be the solution curve of the differential equation dydx+2x2+11x+13x3+6x2+11x+6y=x+3x+1,x>-1, which passes through the point 0,1. Then y1 is equal to

JEE Main 2022 (29 Jul Shift 2)

Options

  • A: 12
  • B: 32
  • C: 52
  • D: 72
Explaination

Question

Let y=yx be the solution of the differential equation dydx=4y3+2yx23xy2+x3,y1=1. If for some nN,y2[n-1,n), then n is equal to _______.

JEE Main 2022 (25 Jul Shift 2)

Enter your answer

Explaination

Question

Suppose y=yx be the solution curve to the differential equation dydx-y=2-e-x such that limxyx is finite. If a and b are respectively the x- and y-intercept of the tangent to the curve at x=0, then the value of a-4b is equal to _______.

JEE Main 2022 (26 Jul Shift 2)

Enter your answer

Explaination

Question

If the solution curve f(x, y)=0 of the differential equation 1+logexdxdy-xlogex=ey, x>0, passes through the points (1, 0) and (a, 2), then aa is equal to

JEE Main 2023 (06 Apr Shift 2)

Options

  • A: e2e2
  • B: ee2
  • C: e2e2
  • D: e2e2
Explaination

Question

Let y=yx be a solution curve of the differential equation, 1-x2y2dx=ydx+xdy, If the line x=1 intersects the curve y=yx at y=2 and the line x=2 intersects the curve y=yx at y=α, then a value of α is

JEE Main 2023 (11 Apr Shift 1)

Options

  • A: 1-3e223e2+1
  • B: 1+3e223e2-1
  • C: 3e223e2-1
  • D: 3e223e2+1
Explaination

Question

Let x=xy be the solution of the differential equation 2y+2logey+2dx+x+4-2logey+2dy=0y>-1 with xe4-2=1. Then xe9-2 is equal to

JEE Main 2023 (15 Apr Shift 1)

Options

  • A: 3
  • B: 49
  • C: 329
  • D: 103
Explaination

Question

If the solution $y=y(x)$ of the differential equation $\left(x^4+2 x^3+3 x^2+2 x+2\right) \mathrm{d} y-\left(2 x^2+2 x+3\right) \mathrm{d} x=0$ satisfies $y(-1)=-\frac{\pi}{4}$, then $y(0)$ is equal to :

JEE Main 2024 (04 Apr Shift 1)

Options

  • A: $\frac{\pi}{2}$
  • B: $-\frac{\pi}{2}$
  • C: 0
  • D: $\frac{\pi}{4}$
Explaination

Question

Let $y=y(x)$ be the solution of the differential equation $\left(x^2+4\right)^2 d y+\left(2 x^3 y+8 x y-2\right) d x=0$. If $y(0)=0$, then $y(2)$ is equal to

JEE Main 2024 (04 Apr Shift 2)

Options

  • A: $\frac{\pi}{32}$
  • B: ${2}{\pi}$
  • C: $\frac{\pi}{8}$
  • D: $\frac{\pi}{16}$
Explaination

Question

Let $y=y(x)$ be the solution of the differential equation $(x+y+2)^2 d x=d y, y(0)=-2$. Let the maximum and minimum values of the function $y=y(x)$ in $\left[0, \frac{\pi}{3}\right]$ be $\alpha$ and $\beta$, respectively. If $(3 \alpha+\pi)^2+\beta^2=\gamma+\delta \sqrt{3}, \gamma, \delta \in \mathbb{Z}$, then $\gamma+\delta$ equals ______

JEE Main 2024 (04 Apr Shift 2)

Enter your answer

Explaination

Question

Suppose the solution of the differential equation $\frac{d y}{d x}=\frac{(2+\alpha) x-\beta y+2}{\beta x-2 \alpha y-(\beta \gamma-4 \alpha)}$ represents a circle passing through origin. Then the radius of this circle is :

JEE Main 2024 (06 Apr Shift 2)

Options

  • A: 2
  • B: $\sqrt{17}$
  • C: $\frac{1}{2}$
  • D: $\frac{\sqrt{17}}{2}$
Explaination

Question

Let $y=y(x)$ be the solution curve of the differential equation $\sec y \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x \sin y=x^3 \cos y, y(1)=0$. Then $y(\sqrt{3})$ is equal to :

JEE Main 2024 (08 Apr Shift 2)

Options

  • A: $\frac{\pi}{3}$
  • B: $\frac{\pi}{6}$
  • C: $\frac{\pi}{12}$
  • D: $\frac{\pi}{4}$
Explaination

Question

The solution curve, of the differential equation $2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+3=5 \frac{\mathrm{d} y}{\mathrm{~d} x}$, passing through the point $(0,1)$ is a conic, whose vertex lies on the line:

JEE Main 2024 (09 Apr Shift 1)

Options

  • A: $2 x+3 y=9$
  • B: $2 x+3 y=-9$
  • C: $2 x+3 y=-6$
  • D: $2 x+3 y=6$
Explaination

Question

Let y=y(x) be the solution of the differential equation secxdy+21-xtanx+x2-xdx=0 such that y0=2. Then y2 is equal to :

JEE Main 2024 (30 Jan Shift 1)

Options

  • A: 2
  • B: 2{1-sin(2)}
  • C: 2{sin(2)+1}
  • D: 1
Explaination

Question

A function y=f(x) satisfies fxsin2x+sinx-1+cos2xf'x=0 with condition f(0)=0. Then fπ2 is equal to

JEE Main 2024 (29 Jan Shift 1)

Options

  • A: 1
  • B: 0
  • C: -1
  • D: 2
Explaination

Back to Content