JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Functions

Question

Let f,g:NN such that fn+1=fn+f1  nN and g be any arbitrary function. Which of the following statements is NOT true?

JEE Main 2021 (25 Feb Shift 1)

Options

  • A: If f is onto, then fn=nnN
  • B: If g is onto, then fog is one-one
  • C: f is one-one
  • D: If fog is one-one, then g is one-one
Explaination

Question

If x be the greatest integer less than or equal to x, then  n=8100-1nn2 is equal to:

JEE Main 2021 (25 Jul Shift 2)

Options

  • A: 0
  • B: 4
  • C: -2
  • D: 2
Explaination

Question

Let A=1,2,3,,10 and f:AA be defined as

fk=k+1if k isoddkif k iseven

Then the number of possible functions g:AA such that gof=f is:

JEE Main 2021 (26 Feb Shift 2)

Options

  • A: C510
  • B: 55
  • C: 5!
  • D: 105
Explaination

Question

Let f:RR be defined as fx+y+fx-y=2fxfy,f12=-1. Then the value of k=1201sinksink+fk is equal to :

JEE Main 2021 (27 Jul Shift 2)

Options

  • A: cosec221cos20cos2
  • B: sec21sec21cos20
  • C: cosec21cosec21sin20
  • D: sec221sin20sin2
Explaination

Question

Let f(x) be a polynomial of degree 3 such that fk=-2k for k=2, 3, 4, 5. Then the value of 52-10 f(10) is equal to _____ .

JEE Main 2021 (01 Sep Shift 2)

Enter your answer

Explaination

Question

Let S=1,2,3,4,5,6,7. Then the number of possible functions f:SS such that fm·n=fm·fn for every m,nS and m·nS, is equal to _____.

JEE Main 2021 (27 Jul Shift 1)

Enter your answer

Explaination

Question

The total number of functions, f:1,2,3,41,2,3,4,5,6 such that f1+f2=f3, is equal to

JEE Main 2022 (25 Jul Shift 1)

Options

  • A: 60
  • B: 90
  • C: 108
  • D: 126
Explaination

Question

Let f:RR be a continuous function such that f3x-fx=x. If f8=7, then f14 is equal to:

JEE Main 2022 (26 Jul Shift 1)

Options

  • A: 4
  • B: 10
  • C: 11
  • D: 16
Explaination

Question

Let fx=x-1x+1, xR-{0,-1,1) . If fn+1x=  ffnx for all nN, then f66+f77 is equal to

JEE Main 2022 (26 Jun Shift 1)

Options

  • A: 76
  • B: -32
  • C: 712
  • D: -1112
Explaination

Question

Let f: be defined as fx=x-1  and g:R1,-1 be defined as gx=x2x2-1. Then the function fog is:

JEE Main 2022 (26 Jun Shift 2)

Options

  • A: One-one but not onto
  • B: onto but not one-one
  • C: Both one-one and onto
  • D: Neither one-one nor onto
Explaination

Question

The domain of the function fx=sin-12x2-3+log2log12x2-5x+5, where t is the greatest integer function, is

JEE Main 2022 (27 Jul Shift 2)

Options

  • A: -52,5-52
  • B: 5-52,5+52
  • C: 1,5-52
  • D: 1,5+52
Explaination

Question

Let α,β and γ be three positive real numbers. Let fx=αx5+βx3+γx,xR and g:RR be such that gfx=x for all xR. If a1,a2,a3,,an be in arithmetic progression with mean zero, then the value of fg1ni=1nfai is equal to

JEE Main 2022 (28 Jul Shift 1)

Options

  • A: 0
  • B: 3
  • C: 9
  • D: 27
Explaination

Question

Let a function f: be defined by fn=2n,n=2,4,6,8,..n-1,n=3,7,11,15,..n+12,n=1,5,9,13,..
then, f is

JEE Main 2022 (28 Jun Shift 1)

Options

  • A: One-one and onto
  • B: One-one but not onto
  • C: Onto but not one-one
  • D: Neither one-one nor onto
Explaination

Question

Let S=1,2,3,4. Then the number of elements in the set {f:S×SS:f is onto and fa,b=fb,a aa,bS×S} is

JEE Main 2022 (28 Jun Shift 2)

Enter your answer

Explaination

Question

The equation x24x+[x]+3=x[x], where [x] denotes the greatest integer function, has:

JEE Main 2023 (24 Jan Shift 1)

Options

  • A: exactly two solutions in (-, )
  • B: no solution
  • C: a unique solution in (-, 1)
  • D: a unique solution in (-, )
Explaination

Question

If fx=x3-x2f'1+xf"2-f'''3xR, then

JEE Main 2023 (24 Jan Shift 2)

Options

  • A: 3f1+f2=f3
  • B: f3-f2=f1
  • C: 2f0-f1+f3=f2
  • D: f1+f2+f3=f0
Explaination

Question

Consider a function f:, satisfying f1+2f2+3f3++xfx=xx+1fx ;x2 with f1=1. Then 1f2022+1f2028 is equal to

 

JEE Main 2023 (29 Jan Shift 2)

Options

  • A: 8200
  • B: 8000
  • C: 8400
  • D: 8100
Explaination

Question

Let A=1,2,3,4,5 and B=1,2,3,4,5,6. Then the number of functions f:AB satisfying f1+f2=f4-1 is equal to........

JEE Main 2023 (11 Apr Shift 2)

Enter your answer

Explaination

Question

If the domain of the function $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{\mathrm{e}}\left(\frac{3 x^2-8 x+5}{x^2-3 x-10}\right)$ is $(\alpha, \beta]$, then $3 \alpha+10 \beta$ is equal to:

JEE Main 2024 (04 Apr Shift 1)

Options

  • A: 100
  • B: 95
  • C: 97
  • D: 98
Explaination

Question

Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ be $\frac{\mathrm{m}}{\mathrm{n}}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :

JEE Main 2024 (04 Apr Shift 1)

Options

  • A: 195
  • B: 201
  • C: 217
  • D: 182
Explaination

Question

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$. If the composition of $f, \underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$, then the value of $\sqrt{3 \alpha+1}$ is equal to ______

JEE Main 2024 (04 Apr Shift 2)

Enter your answer

Explaination

Question

Let $A=\{1,3,7,9,11\}$ and $B=\{2,4,5,7,8,10,12\}$. Then the total number of one-one maps $f: \mathrm{A} \rightarrow \mathrm{B}$, such that $f(1)+f(3)=14$, is :

JEE Main 2024 (05 Apr Shift 1)

Options

  • A: 480
  • B: 240
  • C: 120
  • D: 180
Explaination

Question

Let $f(x)=\frac{1}{7-\sin 5 x}$ be a function defined on $\mathbf{R}$. Then the range of the function $f(x)$ is equal to ;

JEE Main 2024 (06 Apr Shift 2)

Options

  • A: $\left[\frac{1}{7}, \frac{1}{6}\right]$
  • B: $\left[\frac{1}{8}, \frac{1}{5}\right]$
  • C: $\left[\frac{1}{7}, \frac{1}{5}\right]$
  • D: $\left[\frac{1}{8}, \frac{1}{6}\right]$
Explaination

Question

Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of all prime factors of 2310 and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the range of $f$ is

JEE Main 2024 (08 Apr Shift 1)

Options

  • A: 25
  • B: 24
  • C: 20
  • D: 120
Explaination

Question

If a function $f$ satisfies $f(\mathrm{~m}+\mathrm{n})=f(\mathrm{~m})+f(\mathrm{n})$ for all $\mathrm{m}, \mathrm{n} \in \mathbf{N}$ and $f(1)=1$, then the largest natural number $\lambda$ such that $\sum_{k=1}^{2022} f(\lambda+k) \leq(2022)^2$ is equal to _________

JEE Main 2024 (09 Apr Shift 1)

Enter your answer

Explaination

Back to Content