JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Hyperbola

Question

Let e1 and e2 be the eccentricities of the ellipse x225+y2b2=1 b<5 and the hyperbola x216-y2b2=1 respectively satisfying e1e2=1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair α, β is equal to:

JEE Main 2020 (03 Sep Shift 2)

Options

  • A: 8, 10
  • B: 203, 12
  • C: 8, 12
  • D: 245, 10
Explaination

Question

Let a>0, b>0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola x2a2-y2b2=1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2=1114l and e'2=118l', then the value of 77a+44b is equal to

JEE Main 2022 (28 Jun Shift 2)

Options

  • A: 100
  • B: 110
  • C: 120
  • D: 130
Explaination

Question

An ellipse E:x2a2+y2b2=1 passes through the vertices of the hyperbola H:x249-y264=-1. Let the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H. Let the product of the eccentricities of E and H be 12. If l is the length of the latus rectum of the ellipse E, then the value of 113l is equal to _______.

JEE Main 2022 (27 Jul Shift 1)

Enter your answer

Explaination

Question

Let the hyperbola H:x2a2-y2=1 and the ellipse E:3x2+4y2=12 be such that the length of latus rectum of H is equal to the length of latus rectum of E. If eH and eE are the eccentricities of H and E respectively, then the value of 12eH2+eE2 is equal to _____.

JEE Main 2022 (24 Jun Shift 2)

Enter your answer

Explaination

Question

Let H:x2a2-y2 b2=1,a>0, b>0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is 422+14. If the eccentricity H is 112, then value of a2+b2 is equal to ______.

JEE Main 2022 (29 Jun Shift 1)

Enter your answer

Explaination

Question

Let Hn:x21+n-y23+n=1, n. Let k be the smallest even value of n such that the eccentricity of Hk is a rational number. If l is the length of the latus rectum of Hk, then 21l is equal to

JEE Main 2023 (11 Apr Shift 1)

Enter your answer

Explaination

Question

Consider a hyperbola $\mathrm{H}$ having centre at the origin and foci on the $\mathrm{x}$-axis. Let $\mathrm{C}_1$ be the circle touching the hyperbola $\mathrm{H}$ and having the centre at the origin. Let $\mathrm{C}_2$ be the circle touching the hyperbola $\mathrm{H}$ at its vertex and having the centre at one of its foci. If areas (in sq units) of $C_1$ and $C_2$ are $36 \pi$ and $4 \pi$, respectively, then the length (in units) of latus rectum of $\mathrm{H}$ is

JEE Main 2024 (04 Apr Shift 2)

Options

  • A: $\frac{14}{3}$
  • B: $\frac{28}{3}$
  • C: $\frac{11}{3}$
  • D: $\frac{10}{3}$
Explaination

Question

Let e1 be the eccentricity of the hyperbola x216-y29=1 and e2 be the eccentricity of the ellipse x2a2+y2b2=1, a>b, which passes through the foci of the hyperbola. If e1e2=1, then the length of the chord of the ellipse parallel to the x-axis and passing through (0,2) is :

JEE Main 2024 (27 Jan Shift 2)

Options

  • A: 45
  • B: 853
  • C: 1053
  • D: 35
Explaination

Question

Let $H: \frac{-x^2}{a^2}+\frac{y^2}{b^2}=1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4 \sqrt{3}$. Suppose the point $(\alpha, 6), \alpha>0$ lies on $H$. If $\beta$ is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2+\beta$ is equal to

JEE Main 2024 (08 Apr Shift 1)

Options

  • A: 172
  • B: 171
  • C: 169
  • D: 170
Explaination

Question

Let the foci of a hyperbola $H$ coincide with the foci of the ellipse $E: \frac{(x-1)^2}{100}+\frac{(y-1)^2}{75}=1$ and the eccentricity of the hyperbola $H$ be the reciprocal of the eccentricity of the ellipse $E$. If the length of the transverse axis of $H$ is $\alpha$ and the length of its conjugate axis is $\beta$, then $3 \alpha^2+2 \beta^2$ is equal to

JEE Main 2024 (09 Apr Shift 2)

Options

  • A: 237
  • B: 242
  • C: 205
  • D: 225
Explaination

Question

If the foci of a hyperbola are same as that of the ellipse x29+y225=1 and the eccentricity of the hyperbola is 158 times the eccentricity of the ellipse, then the smaller focal distance of the point 2, 14325 on the hyperbola, is equal to

JEE Main 2024 (31 Jan Shift 1)

Options

  • A: 725-83
  • B: 1425-43
  • C: 1425-163
  • D: 725+83
Explaination

Back to Content