JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Indefinite Integration

Question

If e2x+2ex-e-x-1eex+e-xdx=g(x)eex+e-x+c, where c is a constant of integration, then g(0) is

JEE Main 2020 (05 Sep Shift 1)

Options

  • A: e
  • B: e2
  • C: 1
  • D: 2
Explaination

Question

If I1=011-x50100dx and I2=011-x50101dx such that I2=αI1 then α equals to :

JEE Main 2020 (06 Sep Shift 1)

Options

  • A: 50495050
  • B: 50505049
  • C: 50505051
  • D: 50515050
Explaination

Question

The value of the integral sinθ·sin2θsin6θ+sin4θ+sin2θ2sin4θ+3sin2θ+61-cos2θdθ is (where c is a constant of integration)

JEE Main 2021 (25 Feb Shift 1)

Options

  • A: 11811-18sin2θ+9sin4θ-2sin6θ32+c
  • B: 1189-2sin6θ-3sin4θ-6sin2θ32+c
  • C: 11811-18cos2θ+9cos4θ-2cos6θ32+c
  • D: 1189-2cos6θ-3cos4θ-6cos2θ-32+c
Explaination

Question

If fx=5x8+7x6x2+1+2x72dx, x0, f0=0 and f1=1K, then the value of K is

JEE Main 2021 (18 Mar Shift 1)

Enter your answer

Explaination

Question

2ex+3e-x4ex+7e-xdx=114ux+vloge4ex+7e-x+C, where C is a constant of integration, then u+v is equal to

JEE Main 2021 (27 Aug Shift 2)

Enter your answer

Explaination

Question

Let g:0,R be a differentiable function such that xcosx-sinxex+1+gxex+1-xexex+12dx=xgxex+1+C, for all x>0, where C is an arbitrary constant. Then

JEE Main 2022 (25 Jun Shift 1)

Options

  • A: g is decreasing in 0,π4
  • B: g-g' is increasing in 0,π2
  • C: g' is increasing in 0,π4
  • D: g+g' is increasing in 0,π2
Explaination

Question

x2+1exx+12dx=fxex+C, where C is a constant, then d3fdx3 at x=1 is equal to

JEE Main 2022 (27 Jun Shift 1)

Options

  • A: 34
  • B: 38
  • C: -32
  • D: 78
Explaination

Question

For Ix=sec2x-2022sin2022xdx, if Iπ4=21011, then

JEE Main 2022 (29 Jul Shift 2)

Options

  • A: 31010Iπ3-Iπ6=0
  • B: 31010Iπ6-Iπ3=0
  • C: 31011Iπ3-Iπ6=0
  • D: 31011Iπ6-Iπ3=0
Explaination

Question

Let Ix=x2x sec2+tanx(x tanx+1)2dx If I0=0, then Iπ4 is equal to

JEE Main 2023 (06 Apr Shift 1)

Options

  • A: loge(π+4)216+π24(π+4)
  • B: loge(π+4)216-π24(π+4)
  • C: loge(π+4)232-π24(π+4)
  • D: loge(π+4)232+π24(π+4)
Explaination

Question

For α,β,γ,δ, if   xe2x+ex2xlogexdx=1αxeβx-1γexδx+C, where e=n=01n! and C is constant of integration, then α+2β+3γ-4δ is equal to

JEE Main 2023 (10 Apr Shift 2)

Options

  • A: 1
  • B: 4
  • C: -4
  • D: -8
Explaination

Question

If $\int \operatorname{cosec}^5 x d x=\alpha \cot x \operatorname{cosec} x\left(\operatorname{cossc}^2 x+\frac{3}{2}\right)+\beta \log _\epsilon\left|\tan \frac{x}{2}\right|+C$ where $\alpha, \beta \in \mathbb{R}$ and $\mathrm{C}$ is the constant of integration, then the value of $8(\alpha+\beta)$ equals _______

JEE Main 2024 (04 Apr Shift 2)

Enter your answer

Explaination

Question

Let $I(x)=\int \frac{6}{\sin ^2 x(1-\cot x)^2} d x$. If $I(0)=3$, then $I\left(\frac{\pi}{12}\right)$ is equal to

JEE Main 2024 (08 Apr Shift 1)

Options

  • A: $2 \sqrt{3}$
  • B: $\sqrt{3}$
  • C: $3 \sqrt{3}$
  • D: $6 \sqrt{3}$
Explaination

Question

The integral x8-x2dxx12+3x6+1tan-1x3+1x3 is equal to :

JEE Main 2024 (27 Jan Shift 2)

Options

  • A: logtan-1x3+1x313+C
  • B: logetan-1x3+1x312+C
  • C: logetan-1x3+1x3+C
  • D: logetan-1x3+1x33+C
Explaination

Question

If sin32x+cos32xsin3xcos3xsin(x-θ)dx=Acosθtanx-sinθ+Bcosθ-sinθcotx+C, where C is the integration constant, then AB is equal to

JEE Main 2024 (29 Jan Shift 2)

Options

  • A: 4cosec(2θ)
  • B: 4secθ
  • C: 2secθ
  • D: 8cosec(2θ)
Explaination

Back to Content