The value of where is non-zero real number and denotes the greatest integer less than or equal to is equal to :
is equal to :
If are the distinct roots of then is equal to
The value of is equal to :
If , then the value of is __________.
If then is equal to
Let for some . Then the value of is:
is equal to
If , where , then which of the following is NOT correct?
is equal to
If , then is equal to
If $\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{\mathrm{m} \sqrt{5}}{\mathrm{n}(2 \mathrm{n})^{2 / 3}}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $8 \mathrm{~m}+12 \mathrm{n}$ is equal to______
Let $f$ be a differentiable function in the interval $(0, \infty)$ such that $f(1)=1$ and $\lim _{t \rightarrow x} \frac{t^2 f(x)-x^2 f(t)}{t-x}=1$ for each $x>0$. Then $2 f(2)+3 f(3)$ is equal to _______
Let $f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(1)=\lim _{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$. Then $\lim _{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$ is equal to
$\lim _{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\cdots+\left((n-1)^2-(n-1)\right) \cdot 1}{\left(1^3+2^3+\cdots \cdots+n^3\right)-\left(1^2+2^2+\cdots \cdots+n^2\right)}$ is equal to :
The value of $\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots \sqrt[10]{\cos 10 x}}{x^2}\right)$ is
Let $\lim _{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^4+1}}-\frac{2 n}{\left(n^2+1\right) \sqrt{n^4+1}}+\frac{n}{\sqrt{n^4+16}}-\frac{8 n}{\left(n^2+4\right) \sqrt{n^4+16}}\right.$ $\left.+\ldots+\frac{n}{\sqrt{n^4+n^4}}-\frac{2 n \cdot n^2}{\left(n^2+n^2\right) \sqrt{n^4+n^4}}\right)$ be $\frac{\pi}{k}$, using only the principal values of the inverse trigonometric functions. Then $\mathrm{k}^2$ is equal to ________
Let . If for some , then where denotes the greatest integer less than or equal to , is equal to:
Let the slope of the line be for some . Then is equal to ______.