JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Matrices

Question

If A=1525-2515,B=10i1,i=-1, and Q=ATBA, then the inverse of the matrix AQ2021AT is equal to:

JEE Main 2021 (26 Aug Shift 1)

Options

  • A: 1202101
  • B: 10-2021i1
  • C: 152021202115
  • D: 102021i1
Explaination

Question

Let A=aij be a 3×3 matrix, where aij=-1j-i   if i<j2             if i=j-1i+j    if i>j then det3Adj2A-1 is equal to ________.

JEE Main 2021 (20 Jul Shift 2)

Enter your answer

Explaination

Question

Let P=3-1-220α3-50, where αR. Suppose Q=qij is a matrix satisfying PQ=kI3 for
some non-zero kR. If q23=-k8 and Q=k22, then α2+k2 is equal to_________.

JEE Main 2021 (24 Feb Shift 1)

Enter your answer

Explaination

Question

Let the matrix A=010100001 and the matrix B0=A49+2A98. If Bn=AdjBn-1 for all n1, then detB4 is equal to

JEE Main 2022 (28 Jul Shift 1)

Options

  • A: 328
  • B: 330
  • C: 332
  • D: 336
Explaination

Question

The probability that a randomly chosen 2×2 matrix with all the entries from the set of first 10 primes, is singular, is equal to

JEE Main 2022 (29 Jun Shift 1)

Options

  • A: 133104
  • B: 19103
  • C: 18103
  • D: 271104
Explaination

Question

Let A=2-102. If B=I-C15adj A+C25(adj A)2- ...- C55(adj A)5, then the sum of all elements of the matrix B is:

JEE Main 2022 (29 Jun Shift 2)

Options

  • A: -5
  • B: -6
  • C: -7
  • D: -8
Explaination

Question

Let A=2-1-110-11-10 and B=A-I. If ω=3i-12, then the number of elements in the set n1,2,,100:An+ωBn=A+B is equal to _____ .

JEE Main 2022 (25 Jul Shift 1)

Enter your answer

Explaination

Question

Let A=1aa01b001,a,b. If for some nN,An=14821600196001 then n+a+b is equal to _______.

JEE Main 2022 (25 Jul Shift 2)

Enter your answer

Explaination

Question

The number of matrices A=abcd, where a,b,c,d-1,0,1,2,3,,10, such that A=A-1, is ______.

JEE Main 2022 (26 Jul Shift 2)

Enter your answer

Explaination

Question

Let S be the set containing all 3×3 matrices with entries from -1,0,1. The total number of matrices AS such that the sum of all the diagonal elements of ATA is 6 is ______.

JEE Main 2022 (27 Jul Shift 1)

Enter your answer

Explaination

Question

Let x=111 and A=-12301600-1. For k, if X'AkX=33, then k is equal to

JEE Main 2022 (29 Jul Shift 2)

Enter your answer

Explaination

Question

Let A be a 3×3 matrix having entries from the set -1,0,1. The number of all such matrices A having sum of all the entries equal to 5, is _____

JEE Main 2022 (25 Jun Shift 1)

Enter your answer

Explaination

Question

Let A,B,C be 3×3 matrices such that A is symmetric and B and C are skew-symmetric.

Consider the statements

S1 A13 B26-B26 A13 is symmetric

S2 A26C13-C13 A26 is symmetric

Then,

JEE Main 2023 (25 Jan Shift 2)

Options

  • A: Only S2 is true
  • B: Only S1 is true
  • C: Both S1 and S2 are false
  • D: Both S1 and S2 are true
Explaination

Question

The set of all values of t, for which the matrix ete-tsint-2coste-t-2sint-costete-t2sint+coste-tsint-2costete-tcoste-tsint is invertible, is

JEE Main 2023 (29 Jan Shift 2)

Options

  • A: 2k+1π2,k
  • B: kπ+π4,k
  • C: kπ,k
  • D:
Explaination

Question

Let A=mnpq, d=A0 and A-dAdjA=0. Then

JEE Main 2023 (30 Jan Shift 1)

Options

  • A: 1+d2=m+q2
  • B: 1+d2=m+q2
  • C: 1+d2=m2+q2
  • D: 1+d2=m2+q2
Explaination

Question

Let P be a square matrix such that P2=I-P. For α, β, γ, δ, if Pα+Pβ=γl-29P and Pα-Pβ=δl-13P, then α+β+γ-δ is equal to

JEE Main 2023 (06 Apr Shift 2)

Options

  • A: 18
  • B: 40
  • C: 22
  • D: 24
Explaination

Question

Let P=3212-1232, A=1101 and Q=PAPT. If PTQ2007 P=abcdthen 2a+b-3c-4d is equal to

JEE Main 2023 (08 Apr Shift 1)

Options

  • A: 2004
  • B: 2005
  • C: 2007
  • D: 2006
Explaination

Question

Let A=115101. If B=12-1-1 A-1-211, then the sum of all the elements of the matrix n=150Bn is equal to

JEE Main 2023 (12 Apr Shift 1)

Options

  • A: 75
  • B: 125
  • C: 50
  • D: 100
Explaination

Question

Let $\alpha \in(0, \infty)$ and $A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$. If $\operatorname{det}\left(\operatorname{adj}\left(2 A-A^T\right) \cdot \operatorname{adj}\left(A-2 A^T\right)\right)=2^8$, then $(\operatorname{det}(A))^2$ is equal to:

JEE Main 2024 (04 Apr Shift 1)

Options

  • A: 36
  • B: 16
  • C: 1
  • D: 49
Explaination

Question

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=I+\operatorname{adj}(A)+(\operatorname{adj} A)^2+\ldots+(\operatorname{adj} A)^{10}$. Then, the sum of all the elements of the matrix $B$ is:

JEE Main 2024 (04 Apr Shift 2)

Options

  • A: -124
  • B: 22
  • C: -88
  • D: -110
Explaination

Question

Let $A$ and $B$ be two square matrices of order 3 such that $|A|=3$ and $|B|=2$. Then $\left|\mathrm{A}^{\mathrm{T}} \mathrm{A}(\operatorname{adj}(2 \mathrm{~A}))^{-1}(\operatorname{adj}(4 \mathrm{~B}))(\operatorname{adj}(\mathrm{AB}))^{-1} \mathrm{AA}^{\mathrm{T}}\right|$ is equal to :

JEE Main 2024 (05 Apr Shift 1)

Options

  • A: 108
  • B: 32
  • C: 81
  • D: 64
Explaination

Question

If $A$ is a square matrix of order 3 such that $\operatorname{det}(A)=3$ and $\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right)=2^{\mathrm{m}} 3^{\mathrm{n}}$, then $\mathrm{m}+2 \mathrm{n}$ is equal to :

JEE Main 2024 (06 Apr Shift 2)

Options

  • A: 2
  • B: 3
  • C: 6
  • D: 4
Explaination

Question

Let $B=\left[\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right]$ and $A$ be a $2 \times 2$ matrix such that $A B^{-1}=A^{-1}$. If $B C B^{-1}=A$ and $C^4+\alpha C^2+\beta I=O$, then $2 \beta-\alpha$ is equal to

JEE Main 2024 (09 Apr Shift 2)

Options

  • A: 16
  • B: 2
  • C: 8
  • D: 10
Explaination

Question

Let A be a 2×2 real matrix and I be the identity matrix of order 2. If the roots of the equation |A-xI|=0 be -1 and 3, then the sum of the diagonal elements of the matrix A2 is _____.

JEE Main 2024 (27 Jan Shift 2)

Enter your answer

Explaination

Question

Let A=I22MMT, where M is real matrix of order 2×1 such that the relation MTM=I1 holds. If λ is a real number such that the relation AX=λX holds for some non-zero real matrix X of order 2×1, then the sum of squares of all possible values of λ is equal to:

JEE Main 2024 (01 Feb Shift 2)

Enter your answer

Explaination

Back to Content