JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Straight Lines

Question

A triangle ABC lying in the first quadrant has two vertices as A1,2 and B3,1. IfBAC=90o,and arΔABC=55 sq. units, then the abscissa of the vertex C is :

JEE Main 2020 (04 Sep Shift 1)

Options

  • A: 1+5
  • B: 1+25 
  • C: 2+5
  • D: 25-1
Explaination

Question

Let A1,0,B6,2 and C32,6 be the vertices of a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC,APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point -76,-13, is

JEE Main 2020 (07 Jan Shift 1)

Enter your answer

Explaination

Question

Let A-1,1, B3,4 and C2,0 be given three points. A line y=mx, m>0 , intersects lines AC and BC at point P and Q respectively. Let A1 and A2 be the areas of ΔABC and ΔPQC respectively, such that A1=3A2, then the value of m is equal to :

JEE Main 2021 (16 Mar Shift 2)

Options

  • A: 415
  • B: 1
  • C: 2
  • D: 3
Explaination

Question

Let ABC be a triangle with A(-3,1) and ACB=θ,0<θ<π2. If the equation of the median through B is 2x+y-3=0 and the equation of angle bisector of C is 7x-4y-1=0, then tanθ is equal to:

JEE Main 2021 (26 Aug Shift 1)

Options

  • A: 34
  • B: 43
  • C: 2
  • D: 12
Explaination

Question

The equations of the sides AB,BC and CA of a triangle ABC are 2x+y=0, x+py=39 and x-y=3 respectively and P2,3 is its circumcentre. Then which of the following is NOT true

JEE Main 2022 (27 Jul Shift 2)

Options

  • A: AC2=9p
  • B: AC2+p2=136
  • C: 32<area ABC<36
  • D: 34< area ABC<38
Explaination

Question

Let m1,m2 be the slopes of two adjacent sides of a square of side a such that a2+11a+3 m12+m22=220. If one vertex of the square is 10cosα-sinα,10sinα+cosα, where α0,π2 and the equation of one diagonal is cosα-sinαx+sinα+cosαy=10, then 72sin4α+cos4α+a2-3a+13 is equal to

JEE Main 2022 (29 Jul Shift 2)

Options

  • A: 119
  • B: 128
  • C: 145
  • D: 155
Explaination

Question

Let A3a,a,a>0, be a fixed point in the xy-plane. The image of A in y-axis be B and the image of B in x-axis be C. If D3cosθ,asinθ,  is a point in the fourth quadrant such that the maximum area of ACD is 12 square units, then a is equal to _____

JEE Main 2022 (24 Jun Shift 1)

Enter your answer

Explaination

Question

A ray of light passing through the point P2,3 reflects on the X-axis at point A and the reflected ray passes through the point Q5,4. Let R be the point that divides the line segment AQ internally into the ratio 2:1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be α,β. Then, the value of 7α+3β is equal to _____.

JEE Main 2022 (28 Jun Shift 1)

Enter your answer

Explaination

Question

If the orthocentre of the triangle, whose vertices are 1,2,2,3 and 3,1 is α,β, then the quadratic equation whose roots are α+4β and 4α+β, is

JEE Main 2023 (01 Feb Shift 1)

Options

  • A: x2-19x+90=0
  • B: x2-18x+80=0
  • C: x2-22x+120=0
  • D: x2-20x+99=0
Explaination

Question

Let A(0,1), B(1,1) and C(1,0) be the mid-points of the sides of a triangle with incentre at the point D. If the focus of the parabola y2=4ax passing through D is (α+β2,0), where α and β are rational numbers, then αβ2 is equal to

JEE Main 2023 (08 Apr Shift 2)

Options

  • A: 8
  • B: 12
  • C: 6
  • D: 92
Explaination

Question

A triangle is formed by X-axis, Y-axis and the line 3x+4y=60. Then the number of points Pa,b which lie strictly inside the triangle, where a is an integer and b is a multiple of a, is _____ .

JEE Main 2023 (25 Jan Shift 2)

Enter your answer

Explaination

Question

The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :

JEE Main 2024 (04 Apr Shift 1)

Options

  • A: $x+y+(2-\sqrt{2})=0$
  • B: $-x+y-(2-\sqrt{2})=0$
  • C: $x+y-(2-\sqrt{2})=0$
  • D: $x-y-(2+\sqrt{2})=0$
Explaination

Question

Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle A B C=\frac{\pi}{6}$ and $\angle B A C=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $y=x+4$, then $\alpha^2+\gamma^2$ is equal to ________

JEE Main 2024 (04 Apr Shift 2)

Enter your answer

Explaination

Question

Let two straight lines drawn from the origin $\mathrm{O}$ intersect the line $3 x+4 y=12$ at the points $\mathrm{P}$ and $\mathrm{Q}$ such that $\triangle \mathrm{OPQ}$ is an isosceles triangle and $\angle \mathrm{POQ}=90^{\circ}$. If $l=\mathrm{OP}^2+\mathrm{PQ}^2+\mathrm{QO}^2$, then the greatest integer less than or equal to $l$ is :

JEE Main 2024 (05 Apr Shift 1)

Options

  • A: 42
  • B: 46
  • C: 44
  • D: 48
Explaination

Question

Let $A(-1,1)$ and $B(2,3)$ be two points and $P$ be a variable point above the line $A B$ such that the area of $\triangle \mathrm{PAB}$ is 10 . If the locus of $\mathrm{P}$ is $\mathrm{a} x+\mathrm{b} y=15$, then $5 \mathrm{a}+2 \mathrm{~b}$ is :

JEE Main 2024 (05 Apr Shift 2)

Options

  • A: 6
  • B: $-\frac{6}{5}$
  • C: 4
  • D: $-\frac{12}{5}$
Explaination

Question

A ray of light coming from the point $P(1,2)$ gets reflected from the point $Q$ on the $x$-axis and then passes through the point $R(4,3)$. If the point $S(h, k)$ is such that PQRS is a parallelogram, then $h k^2$ is equal to :

JEE Main 2024 (09 Apr Shift 1)

Options

  • A: 70
  • B: 80
  • C: 60
  • D: 90
Explaination

Question

Let A2,1, B1,0, Cα,β and Dγ,δ be the vertices of a parallelogram ABCD. If the point C lies on 2xy=5 and the point D lies on 3x2y=6, then the value of α+β+γ+δ is equal to ______.

JEE Main 2024 (31 Jan Shift 2)

Enter your answer

Explaination

Question

Let ABC be an isosceles triangle in which A is at 1,0, A=2π3, AB=AC and B is on the positive x-axis. If BC=43  and the line BC intersects the line y=x+3 at α,β, then β4α2 is:

JEE Main 2024 (01 Feb Shift 2)

Enter your answer

Explaination

Back to Content