JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Three Dimensional Geometry

Question

Let the position vectors of two points P and Q be 3i^-j^+2k^ and i^+2j^-4k^, respectively. Let R and S be two points such that the direction ratios of lines PR and QS are 4,-1,2 and -2,1,-2, respectively. Let lines PR and QS intersect at T. If the vector TA is perpendicular to both PR and QS and the length of vector TA is 5 units, then the modulus of a position vector of A is :

JEE Main 2021 (16 Mar Shift 1)

Options

  • A: 482
  • B: 171
  • C: 5
  • D: 227
Explaination

Question

The angle between the straight lines, whose direction cosines l,m,n are given by the equations 2l+2 m-n=0 and mn+nl+lm=0, is:

JEE Main 2021 (27 Aug Shift 2)

Options

  • A: π3
  • B: π2
  • C: cos-189
  • D: π-cos-149
Explaination

Question

For real numbers α and β0, if the point of intersection of the straight lines x-α1=y-12=z-13 and x-4β=y-63=z-73 lies on the plane x+2y-z=8, then α-β is equal to :

JEE Main 2021 (27 Jul Shift 2)

Options

  • A: 5
  • B: 9
  • C: 3
  • D: 7
Explaination

Question

Let α be the angle between the lines whose direction cosines satisfy the equations l+m-n=0 and l2+m2-n2=0. Then the value of sin4α+cos4α is :

JEE Main 2021 (25 Feb Shift 1)

Options

  • A: 58
  • B: 12
  • C: 38
  • D: 34
Explaination

Question

If the length of the perpendicular drawn from the point Pa,4,2,a>0 on the line x+12=y-33=z-1-1 is 26 units and Qα1,α2,α3 is the image of the point P in this line, then a+i=13αi is equal to

JEE Main 2022 (27 Jul Shift 2)

Options

  • A: 7
  • B: 8
  • C: 12
  • D: 14
Explaination

Question

Let P-2,-1,1 and Q5617,4317,11117 be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are α,-1,β, where both α and $\beta$ are integers of minimum absolute values, then α2+β2 is equal to

JEE Main 2022 (28 Jul Shift 1)

Enter your answer

Explaination

Question

The line l1 passes through the point 2,6,2 and is perpendicular to the plane 2x+y-2z=10. Then the shortest distance between the line l1 and the line x+12=y+4-3=z2 is:

JEE Main 2023 (30 Jan Shift 1)

Options

  • A: 7
  • B: 193
  • C: 192
  • D: 9
Explaination

Question

Let N be the foot of perpendicular from the point P(1,-2,3) on the line passing through the points (4,5,8) and (1,-7,5). Then the distance of N from the plane 2x-2y+z+5=0 is

JEE Main 2023 (13 Apr Shift 2)

Options

  • A: 8
  • B: 6
  • C: 9
  • D: 7
Explaination

Question

The shortest distance between the lines x-51=y-22=z-4-3 and x+31=y+54=z-1-5 is

JEE Main 2023 (01 Feb Shift 1)

Options

  • A: 73
  • B: 53
  • C: 63
  • D: 43
Explaination

Question

Let a line L pass through the origin and be perpendicular to the lines L1:r=i^-11j^-7k^+λi^+2j^+3k^, λ and
L2:r=-i^+k^+μ2i^+2j^+k^, μ. If P is the point of intersection of L and L1, and ,Qα,β,γ is the foot of perpendicular from P on L2, then 9α+β+γ is equal to ________.

JEE Main 2023 (11 Apr Shift 1)

Enter your answer

Explaination

Question

If the line $\frac{2-x}{3}=\frac{3 y-2}{4 \lambda+1}=4-z$ makes a right angle with the line $\frac{x+3}{3 \mu}=\frac{1-2 y}{6}=\frac{5-z}{7}$, then $4 \lambda+9 \mu$ is equal to :

JEE Main 2024 (05 Apr Shift 1)

Options

  • A: 4
  • B: 13
  • C: 5
  • D: 6
Explaination

Question

The shortest distance between the lines $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$ and $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$ is

JEE Main 2024 (06 Apr Shift 1)

Options

  • A: $8 \sqrt{3}$
  • B: $4 \sqrt{3}$
  • C: $5 \sqrt{3}$
  • D: $6 \sqrt{3}$
Explaination

Question

Let $P$ be the point $(10,-2,-1)$ and $Q$ be the foot of the perpendicular drawn from the point $R(1,7,6)$ on the line passing through the points $(2,-5,11)$ and $(-6,7,-5)$. Then the length of the line segment $P Q$ is equal to ________

JEE Main 2024 (06 Apr Shift 1)

Enter your answer

Explaination

Question

Let $P(x, y, z)$ be a point in the first octant, whose projection in the $x y$-plane is the point $Q$. Let $O P=\gamma$; the angle between $O Q$ and the positive $x$-axis be $\theta$; and the angle between $O P$ and the positive $z$-axis be $\phi$, where $O$ is the origin. Then the distance of $P$ from the $x$-axis is

JEE Main 2024 (08 Apr Shift 1)

Options

  • A: $\gamma \sqrt{1-\sin ^2 \phi \cos ^2 \theta}$
  • B: $\gamma \sqrt{1-\sin ^2 \theta \cos ^2 \phi}$
  • C: $\gamma \sqrt{1+\cos ^2 \phi \sin ^2 \theta}$
  • D: $\gamma \sqrt{1+\cos ^2 \theta \sin ^2 \phi}$
Explaination

Question

Let the line $\mathrm{L}$ intersect the lines $x-2=-y=z-1,2(x+1)=2(y-1)=z+1$ and be parallel to the line $\frac{x-2}{3}=\frac{y-1}{1}=\frac{z-2}{2}$. Then which of the following points lies on L?

JEE Main 2024 (09 Apr Shift 1)

Options

  • A: $\left(-\frac{1}{3}, 1,-1\right)$
  • B: $\left(-\frac{1}{3},-1,1\right)$
  • C: $\left(-\frac{1}{3}, 1,1\right)$
  • D: $\left(-\frac{1}{3},-1,-1\right)$
Explaination

Question

If the mirror image of the point P(3,4,9) in the line x13=y+12=z21 is α,β,γ, then 14α+β+γ is:

JEE Main 2024 (01 Feb Shift 2)

Options

  • A: 102
  • B: 138
  • C: 108
  • D: 132
Explaination

Question

Let L1:r=i^-j^+2k^+λi^-j^+2k^, λRL2:r=j^-k^+μ3i^+j^+pk^, μR and L3:r=δ(li^+mj^+nk^), δR be three lines such that L1 is perpendicular to L2 and L3 is perpendicular to both L1 and L2. Then the point which lies on L3 is

JEE Main 2024 (30 Jan Shift 2)

Options

  • A: (-1,7,4)
  • B: (-1,-7,4)
  • C: (1,7,-4)
  • D: (1,-7,4)
Explaination

Question

Let the line of the shortest distance between the lines L1:r=i^+2j^+3k^+λi^j^+k^ and L2:r=4i^+5j^+6k^+μi^+j^k^ intersect L1 and L2 at P and Q respectively. If α,β,γ is the midpoint of the line segment PQ, then 2α+β+γ is equal to___________

JEE Main 2024 (01 Feb Shift 1)

Enter your answer

Explaination

Question

Let P and Q be the points on the line x+38=y42=z+12 which are at a distance of 6 units from the point R(1,2,3). If the centroid of the triangle PQR is α,β,γ, then α2+β2+γ2 is:

JEE Main 2024 (01 Feb Shift 2)

Options

  • A: 26
  • B: 36
  • C: 18
  • D: 24
Explaination

Question

Let Q and R be the feet of perpendiculars from the point Pa, a, a on the lines x=y, z=1 and x=y, z=1 respectively. If QPR is a right angle, then 12a2 is equal to ________

JEE Main 2024 (31 Jan Shift 1)

Enter your answer

Explaination

Question

Consider the line $L$ passing through the points $(1,2,3)$ and $(2,3,5)$. The distance of the point $\left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right)$ from the line $\mathrm{L}$ along the line $\frac{3 x-11}{2}=\frac{3 y-11}{1}=\frac{3 z-19}{2}$ is equal to

JEE Main 2024 (09 Apr Shift 2)

Options

  • A: 6
  • B: 5
  • C: 4
  • D: 3
Explaination

Question

The square of the distance of the image of the point $(6,1,5)$ in the line $\frac{x-1}{3}=\frac{y}{2}=\frac{z-2}{4}$, from the origin is _________

JEE Main 2024 (09 Apr Shift 2)

Enter your answer

Explaination

Question

If d1 is the shortest distance between the lines x+1=2 y=-12 z, x=y+2=6 z-6 and d2 is the shortest distance between the lines x-12=y+8-7=z-45,x-12=y-21=z-6-3, then the value of 323 d1 d2 is :

JEE Main 2024 (30 Jan Shift 1)

Enter your answer

Explaination

Question

The lines x-22=y-2=z-716 and x+34=y+23=z+21 intersect at the point P. If the distance of P from the line x+12=y-13=z-11 is l, then 14l2 is equal to _____.

JEE Main 2024 (27 Jan Shift 2)

Enter your answer

Explaination

Question

If the shortest distance between the lines $\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$ and $\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$ is $\frac{38}{3 \sqrt{5}} \mathrm{k}$, and $\int_0^{\mathrm{k}}\left[x^2\right] \mathrm{d} x=\alpha-\sqrt{\alpha}$, where $[x]$ denotes the greatest integer function, then $6 \alpha^3$ is equal to________

JEE Main 2024 (04 Apr Shift 1)

Enter your answer

Explaination

Back to Content