JEE Mains Top 500 PYQs

Join Discord

Top Previous Year Questions - Vector Algebra

Question

Let a,b and c be three vectors such that a=3,b=5,bc=10 and the angle between b and c is π3. If a is perpendicular to the vector b×c, then a×b×c is equal to ____________.

JEE Main 2020 (09 Jan Shift 2)

Enter your answer

Explaination

Question

If the vectors, p=a+1i^+aj^+ak^,q=ai^+a+1j^+ak^ and r=ai^+aj^+a+1k^aR are coplanar and 3p.q2-λr×q2=0 , then the value of λ is ________

JEE Main 2020 (09 Jan Shift 1)

Enter your answer

Explaination

Question

Let a=i^+2j^-3k^ and b=2i^-3j^+5k^. If r×a=b×r,r·αi^+2j^+k^=3 and r·(2i^+5j^-αk^)=-1,αR, then the value of  α+|r|2 is equal to :

JEE Main 2021 (16 Mar Shift 2)

Options

  • A: 9
  • B: 15
  • C: 13
  • D: 11
Explaination

Question

Let a=2i^-3j^+4k^ and b=7i^+j^-6k^ If r×a=r×b,r·(i^+2j^+k^)=-3, then r·(2i^-3j^+k^) is equal to:

JEE Main 2021 (17 Mar Shift 1)

Options

  • A: 12
  • B: 8
  • C: 13
  • D: 10
Explaination

Question

Let a=i^+2j^-k^, b=i^-j^ and c=i^-j^-k^ be three given vectors. If r is a vector such that r×a=c×a and r·b=0, then r·a is equal to

JEE Main 2021 (25 Feb Shift 1)

Enter your answer

Explaination

Question

Let p=2i^+3j^+k^ and q=i^+2j^+k^ be two vectors. If a vector r=αi^+βj^+γk^ is perpendicular to each of the vectors (p+q) and (p-q), and |r|=3, then |α|+|β|+|γ| is equal to             

JEE Main 2021 (25 Jul Shift 1)

Enter your answer

Explaination

Question

Let a=a1i^+a2j^+a3k^, ai>0, i=1,2,3 be a vector which makes equal angles with the coordinate axes OX,OY and OZ. Also, let the projection of a on the vector 3i^+4j^ be 7 . Let b be a vector obtained by rotating a with 90°. If a,b and x-axis are coplanar, then projection of a vector b on 3i^+4j^ is equal to

JEE Main 2022 (25 Jun Shift 1)

Options

  • A: 7
  • B: 2
  • C: 2
  • D: 7
Explaination

Question

Let a=αi^+j^+βk^ and b=3i^-5j^+4k^ be two vectors, such that a×b=-i^+9i^+12k^. Then the projection of b-2a on b+a is equal to

JEE Main 2022 (27 Jul Shift 1)

Options

  • A: 2
  • B: 395
  • C: 9
  • D: 465
Explaination

Question

Let a=i^+j^-k^ and c=2i^-3j^+2k^. Then the number of vectors b such that b×c=a and b1,2,,10 is

JEE Main 2022 (27 Jun Shift 1)

Options

  • A: 0
  • B: 1
  • C: 2
  • D: 3
Explaination

Question

Let a and b be the vectors along the diagonal of a parallelogram having area 22. Let the angle between a and b be acute. a=1 and a.b=a×b. If c=22a×b-2b, then an angle between b and c is

JEE Main 2022 (27 Jun Shift 2)

Options

  • A: -π4
  • B: 5π6
  • C: π3
  • D: 3π4
Explaination

Question

Let the vectors a=1+ti^+1-tj^+k^, b=1-ti^+1+tj^+2k^ and c=ti^-tj^+k^, tR be such that for α,β,γR, αa+βb+γc=0 α=β=γ=0. Then, the set of all values of t is

JEE Main 2022 (28 Jul Shift 1)

Options

  • A: a non-empty finite set
  • B: equal to N
  • C: equal to R-0
  • D: equal to R
Explaination

Question

Let A, B, C be three points whose position vectors respectively are:

a=i^+4j^+3k^

b=2i^+αj^+4k^, αR

c=3i^-2j^+5k^

If α is the smallest positive integer for which a, b, c are non-collinear, then the length of the median, ABC, through A is:

JEE Main 2022 (29 Jun Shift 2)

Options

  • A: 822
  • B: 622
  • C: 692
  • D: 662
Explaination

Question

Let b=i^+j^+λk^,λ. If a is a vector such that a×b=13i^-j^-4k^ and a·b+21=0, then b-a·k^-j^+b+a·i^-k^ is equal to

JEE Main 2022 (25 Jun Shift 2)

Enter your answer

Explaination

Question

Let S be the set of all aR for which the angle between the vectors u=alogebi^-6j^+3k^ and v=logebi^+2j^+2alogebk^,b>1 is acute. Then S is equal to

JEE Main 2022 (28 Jul Shift 2)

Options

  • A: -,-43
  • B: Φ
  • C: -43,0
  • D: 127,
Explaination

Question

Let u=i^-j^-2k^, v=2i^+j^-k^v·w=2 and v×w=u+λv, then u·w is equal to

JEE Main 2023 (24 Jan Shift 1)

Options

  • A: 1
  • B: 32
  • C: 2
  • D: -23
Explaination

Question

The vector a=-i^+2j^+k^ is rotated through a right angle, passing through the y-axis in its way and the resulting vector is b. Then the projection of 3a+2b on c=5i^+4j^+3k^ is

JEE Main 2023 (25 Jan Shift 1)

Options

  • A: 32
  • B: 1
  • C: 6
  • D: 23
Explaination

Question

Let $\mathrm{ABC}$ be a triangle of area $15 \sqrt{2}$ and the vectors $\overrightarrow{\mathrm{AB}}=\hat{i}+2 \hat{j}-7 \hat{k}, \overrightarrow{\mathrm{BC}}=\mathrm{a} \hat{i}+\mathrm{b} \hat{j}+\mathrm{ck}$ and $\overrightarrow{\mathrm{AC}}=6 \hat{i}+\mathrm{d} \hat{j}-2 \hat{k}, \mathrm{~d}>0$. Then the square of the length of the largest side of the triangle $\mathrm{ABC}$ is _______

JEE Main 2024 (04 Apr Shift 1)

Enter your answer

Explaination

Question

Let $\overrightarrow{\mathrm{a}}=2 \hat{i}+5 \hat{j}-\hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\overrightarrow{\mathrm{c}}$ be three vectors such that $(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i})=\vec{a} \times(\vec{c}+\hat{i})$. If $\vec{a} \cdot \vec{c}=-29$, then $\vec{c} \cdot(-2 \hat{i}+\hat{j}+\hat{k})$ is equal to:

JEE Main 2024 (05 Apr Shift 2)

Options

  • A: 15
  • B: 12
  • C: 10
  • D: 5
Explaination

Question

Let $\vec{a}=9 \hat{i}-13 \hat{j}+25 \hat{k}, \vec{b}=3 \hat{i}+7 \hat{j}-13 \hat{k}$ and $\vec{c}=17 \hat{i}-2 \hat{j}+\hat{k}$ be three given vectors. If $\vec{r}$ is a vector such that $\vec{r} \times \vec{a}=(\vec{b}+\vec{c}) \times \vec{a}$ and $\vec{r} \cdot(\vec{b}-\vec{c})=0$, then $\frac{|593 \vec{r}+67 \vec{a}|^2}{(593)^2}$ is equal to___________

JEE Main 2024 (08 Apr Shift 1)

Enter your answer

Explaination

Question

Let three vectors $\overrightarrow{\mathrm{a}}=\alpha \hat{i}+4 \hat{j}+2 \hat{k}, \overrightarrow{\mathrm{b}}=5 \hat{i}+3 \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{c}}=x \hat{i}+y \hat{j}+z \hat{k}$ form a triangle such that $\vec{c}=\vec{a}-\vec{b}$ and the area of the triangle is $5 \sqrt{6}$. If $\alpha$ is a positive real number, then $|\vec{c}|^2$ is equal to:

JEE Main 2024 (09 Apr Shift 1)

Options

  • A: 16
  • B: 14
  • C: 12
  • D: 10
Explaination

Question

If a=i^+2j^+k^, b=3i^-j^+k^ and c be the vector such that a×c=b and a·c=3, then a·(c×b-b-c) is equal to

JEE Main 2024 (27 Jan Shift 1)

Options

  • A: 32
  • B: 24
  • C: 20
  • D: 36
Explaination

Question

Let a=i^+αj^+βk^ , α,βR. Let a vector b be such that the angle between a and b is π4 and b2=6, If a·b=32, then the value of α2+β2|a×b|2 is equal to

JEE Main 2024 (30 Jan Shift 2)

Options

  • A: 90
  • B: 75
  • C: 95
  • D: 85
Explaination

Question

Let a and b be two vectors such that |b|=1 and |b×a|=2 Then |(b×a)-b|2 is equal to

JEE Main 2024 (30 Jan Shift 2)

Options

  • A: 3
  • B: 5
  • C: 1
  • D: 4
Explaination

Question

Let a=3i^+2j^+k^,b=2i^j^+3k^ and c be a vector such that a+b×c=2a×b+24j^6k^ and ab+i^.c=3. Then c2 is equal to _______.

JEE Main 2024 (31 Jan Shift 2)

Enter your answer

Explaination

Question

Let a=i^+j^+k^,b=i^8j^+2k^ and c=4i^+c2j^+c3k^ be three vectors such that b×a=c×a. If the angle between the vector c and the vector 3i^+4j^+k^ is θ, then the greatest integer less than or equal to tan2θ is:

JEE Main 2024 (01 Feb Shift 2)

Enter your answer

Explaination

Back to Content